数学表述
设给定离散数据式中xk为自变数x(标量或向量,即一元或多元变数)的取值;yk为因变数y(标量)的相应值。曲线拟合要解决的问题是寻求与目的背景规律相适应解析表达式
使它在某种意义下最佳地逼近或拟合,y = f(x,b)称为拟合模型;b为待定参数,当b仅在f中线性地出现时,称模型为线性的,否则为非线性的。
基本介绍
- 中文名:线性拟合
- 外文名:无
- 类别:物理学
- 词性:名词
含义
曲线拟合
用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函式关係。更广泛地说,空间或高维空间中的相应问题亦属此範畴。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化。实践中,离散点组或数据往往是各种物理问题和统计问题有关量的多次观测值或实验值,它们是零散的,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律。这种缺陷正可由适当的解析表达式来弥补。
称为在xk处拟合的残差或剩余,衡量拟合优度的标準通常有
式中ωk>0为权係数或权重(如无特别指定,一般取为平均权重,即(k=1,2,…,m),此时无需提到权)。当参数b)使T(b))或Q(b))达到最小时,相应的(2)分别称为在加权切比雪夫意义或加权最小二乘意义下对 (1)的拟合,后者在计算上较简便且最为常用。
模型中参数的确定
一般的线性模型是以参数b)为係数的广义多项式,即 (3)式中g0,g1,…,gn称为基函式。对诸gj的不同选取可构成多种典型的和常用的线性模型。从函式逼近的观点来看,式(3)还能近似地体现许多非线性模型的性质。
在最小二乘意义下用线性模型(3)拟合离散点组(1),参数b可通过解方程组(i=0,…,n)来确定,即解关于b0,b1,…,bn的线性代数方程组 (4)式中 (i,j=0,1,…,n),
方程组(4)通常称为法方程或正规方程,当m>n时一般有惟一解。
至于非线性模型以及非最小二乘原则的情形,参数b)可通过解非线性方程组或最最佳化计算中的有关方法来确定(见非线性方程组数值解法、最最佳化)。
模型的选择
对于给定的离散数据(1),需恰当地选取一般模型(2)中函式?(x,b))的类别和具体形式,这是拟合效果的基础。若已知(1)的实际背景规律,即因变数y对自变数x的依赖关係已有表达式形式确定的经验公式,则直接取相应的经验公式为拟合模型。反之,可通过对模型(3)中基函式g0,g1,…,gn(个数和种类)的不同选取,分别进行相应的拟合併择其效果佳者。函式g0,g1,…,gn对模型的适应性起着测试的作用,故又称为测试函式。另一种途径是:在模型(3)中纳入个数和种类足够多的测试函式,藉助于数理统计方法中的相关性分析和显着性检验,对所包含的测试函式逐个或依次进行筛选以建立较适合的模型(见回归分析)。当然,上述方法还可对拟合的残差(视为新的离散数据)再次进行,以弥补初次拟合的不足。总之,当数据中变数之间的内在联繫不明确时,为选择到相适应的模型,一般需要反覆地进行拟合试验和分析鉴别。
定义
已知某函式的若干离散函式值{f1,f2,…,fn},通过调整该函式中若干待定係数f(λ1, λ2,…,λm), 使得该函式与已知点集的差别(最小二乘意义)最小。如果待定函式是线性,就叫线性拟合或者线性回归(主要在统计中)。
线性拟合

套用
线性拟合作为数学计算中一种常用的数学方法,在建筑、物理、化学、甚至于天体物理、航天中都得到基本的套用。一般情况下,线性拟合需要根据实际需要,取用不同的拟合度,即R2。
区别
两个变数之间的关係是一次函式关係的——图象是直线,这样的两个变数之间的关係就是“线性关係”;如果不是一次函式关係的——图象不是直线,就是“非线性关係”。
线性拟合散点图
