种豆资源网

当前位置:首页 > 百科 > 百科综合 / 正文

美国YF-23战斗机

(2020-05-04 06:08:47) 百科综合
美国YF-23战斗机

美国YF-23战斗机

在外观上,YF-23A的机身颇有些洛克希德SR-71黑鸟的风格,看上去就像把前机身和两个分离的发动机舱直接嵌到一个整体机翼上一样。前机身内主要设定雷达舱、座舱、前起落架舱、航电设备舱和飞弹舱。前机身前段横截面近似一个上下对称的圆角六边形,然后逐步过渡到圆形潢截面,最后在机身中段与机翼完全融合。后面的进气道和发动机舱横截面仍是梯形,并以非常平滑的曲线过渡到机翼或后机身的“海狸尾巴”,这有助于减小相互之间的干扰阻力。前面提到过,空军取消了採用反推装置的要求,而诺斯罗普并未修改设讣,在后机身形成非常明显的“沟槽”,带来不必要的阻力增量。

基本介绍

  • 中文名称:YF-23战斗机
  • 国家:美国
  • 产量:2架

布局设计

美国YF-23战斗机
边条边条翼布局在大迎角时比鸭式布局的升力特性有更大优势——这是影响诺斯罗普选择YF-23A整体布局的因素之一。就传统边条而言,其展长的增大(面积也增大)对提高大迎角时的升力有明显好处。但展长越大,大迎角下产生的上仰力矩也越大;成为制约边条大小的一个因素。但显然YF-23A的边条不同于三代机上的传统边条。其三段直线式窄边条设计相当有特点,从机翼前缘一直向前延伸到雷达罩顶端。这种边条倒是和YF-22A的边条颇为类似。YF-23A的边条具有以下几个功能:产生边条涡,在机翼上诱导出涡升力,改善机翼升力特性;利用边条涡为机翼上表面附面层补充能量,推迟机翼失速;起到气动“翼刀”的作用,阻止附面层向翼尖堆积,推迟翼尖气流分离(事实上由于YF-23A机翼根梢比很大,高速或大迎角下可能会有明显的翼尖分离趋势);大迎角下机头涡的分离,提供更好的俯仰和方向稳定性——直到第三代超音速战斗机,大迎角下机头涡不对称分离的问题仍未解决,这是限制飞机进入过失速领域的一个重要因素。 综合权衡之下,只有採用中等后掠角的对称菱形翼,才能在隐身、续航、气动等诸方面取得令人较为满意的平衡点。至于为什幺恰好选定40度后掠角,笔者认为,在其它条件基本得到满足的情况下,最佳化边条涡的有利干扰应该是影响因素之一。不过,既便如此,40度的后缘前掠角也严重影响了机翼后缘气动装置的效率:YF-23A必须使用更大的襟翼下偏角来保证增升效果,但这又增大了机翼上表面附面层分离趋势,不但增大了附面层控制难度,也反过来降低了增升效果另一方面,YF-23A的副翼效率也不佳,导致其滚转率不能满足要求,而这最终影响到了竞争试飞的结果。就机翼的特点来看,诺斯罗普的考虑优先顺序首先是隐身,其次是超音速和续航能力,最后才是机动性和敏捷性。为改善机翼升力特性,YF-23A採用了前缘机动襟翼设计,其展长约占2/3翼展。有资料称该机採用的是缝翼设计,但在YF-23A试飞照片上看不出缝翼的特徵。而且从隐身角度考虑,当缝翼伸出时,形成的狭缝将成为电磁波的良好反射体,这对于诺斯罗普来说是绝对不能接受的。事实上,前缘襟翼对飞机的隐身特性仍然有不利影响。最好的解决手段是在AFTI/F-111上验证的任务自适应机翼技术,可以避免机翼表面的不连续和开缝,不过遗憾的是直至今天这一技术仍未投入实用。对此,YF-22A採用了从F-117上继承来的菱形槽设计,使得襟翼偏转时该处成为低雷达反射区。而极力追求隐身的YF-23A竟然不考虑这个细节,唯一的解释就是在该机的典型作战状态(超巡)时,机翼为对称翼型,不需要偏转襟翼。
位于YF-23A机翼后缘的气动操纵面设计相当有特色,可算是YF-23A的亮点。有的资料称,机翼内侧为襟翼,外侧则是副翼,但实际情况远非这幺简单。简单的襟翼、副翼之分,并不符合诺斯罗普在YF-23A上体现出来的“一物多用”的设计思想。就YF-23A的试飞照片来看,内、外侧控制面均有参与增升和滚转控制。因此笔者将其定位为“多用途襟副翼”。之所以说“多用途”,是因为这两对控制面除了传统襟副其的功能外,还兼有减速板和阻力方向舵的作甩当内侧襟副翼同时下偏,外侧襟副冀同时上偏,在保证机翼不产生额外升力增量的同时,产生对称气动阻力,起到减速板的作用;当只有一侧襟副翼採用上/下偏时,则产生小对称阻力,起到阻力方向舵的作用——这肯定是从B-2的设计继承发展而来的。这种设计相当新颖,有效地减轻了重量,但飞控系统的複杂性和研製风险则不可避免地增大了。
尾翼V形尾翼设计并非诺斯罗普首创。1956年法国C.M.175教练机就採用了V形尾翼。洛克希德的F-117A也是如此(不过比较特殊,只提供方向控制)。但在强调机动性的未来战机上採用V形尾翼设计,YF-23A是第一个。YF-23A的v形尾翼设计相当独特。为了保证4波瓣雷达反射特性,平尾前后缘在水平面内的投影分别和机翼前后缘平行。这使得该机尾翼看起来相当巨大。考虑到大部分雷达反射发生在与水平面成±30度的範围内,YF-23A採用了将尾翼外倾40度的设计,以确保雷达波不会被反射回接收机,但相应的尾翼效率也降低了。相比之下,YF-22A採用91、倾27度的设计,处F隐身设计的边缘,属于隐身和机动综合权衡的结果。按照公开的说法,YF-23A出于大迎角机动性的要求,其尾翼採用宽间距布置,完全避开了边条和机翼内侧涡流,因此改善了剧烈机动状态下俯仰、滚转和偏航控制。就隐身而言,YF-23A的尾翼设计显然是成功的,但其气动效率却不免令人担、心。偏航、俯仰、滚转,二轴控制全部包揽。一物多用固然好,但重要却往往被人忽略的一点是:尾翼的总控制能力是有限的,某个轴占用较多的控制能力,必然会削弱其它轴的控制能力。当飞机陷于比较複杂的状态时,YF-23A的尾翼未必能兼顾。看看后来F一22的过失速试飞情况就知道了,操纵面的控制负荷是相当重的,而且还要加上推力矢量控制才行。当然,换个角度想,可能诺斯罗普压根儿就没有考虑超火迎角飞行的控制问题。能够保证大迎角範围内不出现气动发散的情况(诺斯罗普称,风洞数据显示YF-23A可以在所有迎角範围内稳定飞行,但YF-23A的试飞迎角最终也没有超过25度),是诺斯罗普在这方面所作的极限了。毕竟机动性并小是YF-23A的第一优先目标,过失速机动性就更不用说了。

作战性能

美国YF-23战斗机
飞控系统和推力矢量控制随控布局经过长期验证在ATF设计阶段已经相当成熟。YF-23A套用随控布局技术、为此採用电传飞控系统并不令人意外。不过由于最终竞争失败,外界对该机的飞控系统细节了解极少。前面已经提到,YF-23A在设计上具有鲜明的“一物多用”的特色。由于减少了操纵面和相应的控制机构,有助于飞机减轻重量和减小阻力,对于改善飞机隐身特性也是相当有利的。但除了操纵面负荷问题外,这种设计必然面临的一个考验就是飞控系统的複杂化。固然,在已经成功的B-2上也可以见到类似的设计,不过必须看到的是,对于不需要进行複杂机动的轰炸机而占,这种一物多用的设计问题不大;然而战斗机即使在常规条件下的机动,其操纵面的偏转控制也是相当複杂的,一物多用的设计必然会加大飞控系统的複杂程度和研製风险。如果还要考虑超常规飞行的话,飞控系统的设计难度可想而知。飞控软体的编制是飞控系统设计难点之一。自电传飞控系统实用化以来,大多数一流战机都在这上面栽过跟头。1992年4月25日,YF-22A因为飞控软体问题造成“飞行员诱发振荡”,撞地损毁。后来F一22试飞阶段还不断对飞控软体进行改进升级。连基本按照常规设计的YF-22A飞控系统都有这幺多麻烦,非常规设计的YF-23A飞控系统就更难说。在对设计风险的判断上,美国空军还是比较準确的。如果YF-23A採用了推力矢量控制系统,一物多用带来的控制面负荷问题町能会得到缓解,对改善机动性和敏捷性也有好处。但诺斯罗普最终放弃了推力矢量,以确保其首要目标——隐身能力。因为如要套用推力矢量控制技术,就必须更改后机身设计,不仅增大了飞机重量,也导致飞机雷达反射截面积(主要是后向)增大和红外隐身能力下降——因为必须取消那个沟槽式尾喷口设计。这并不符合诺斯罗普的设计思想。 进/排气系统进气道和发动机一级压气机是喷气机前方雷达反射截面积的主要来源,设计稍有不慎即可导致为隐身所作的努力全数付诸东流。通常在中、高空飞行的飞机,如F-117、B-2,其主要威胁来自下方,因此可将进气道和喷管置于机体上表面,以机身遮挡主要雷达反射特徵。但对于制空战斗机而言,这一威胁定律显然不适用。如果住所有方向上的威胁具有同等可能性,在这种情况下依据什幺原则来设计飞机呢?并没有一个人人满意的答案。从YF-23A的设计来看,在没有适用的隐身规则的情况下,其进气道设计选择了遵循机动性和进气要求。
发动机进气道是一个空腔结构,本身就是良好的雷达波反射体。而发动机一级压气机高速旋转的叶片不仅是强反射源,其反射波频谱甚至足以成为飞机型号的识别特徵。要解决隐身问题,就必须首先解决这两个麻烦。解决途径之一是遮挡。F-111、幻影那种三元进气道,其激波锥可以在一定程度上遮蔽进气道内部和压气机的反射波,但问题是激波锥本身就是一个强雷达散射源。另一个也是更常採用的途径是S形进气道,并在进气道内敷设吸波材料。不过S形进气道并不是想像中那幺简单,设计不当可能导致严重的总压损失。没有大量的验证,设计时少不了要吃苦头的。YF-23A的进气口位于机翼下方靠近前缘的位置,类似苏-27的设计,这显然是处于大迎角条件下进气要求的考虑。其横截面为梯形,除了垂直面上的斜切结构外,在水下面上也略有斜切,可以起到改善大迎角和侧滑条件下进气效率的作用。在进气口前方,设计有多孔式附面层吸除装置(机翼下表面未喷漆区域),并经机翼上表面排出一一由于进气口靠近机翼前缘,附面层厚度不大,因此不需要採用大型的附面层隔道,有助于减小雷达反射特徵。在发动机舱卜表面还设计有辅助进气门(位于附面层排放狭缝旁边的带锯齿后缘的梯形板),用于在起降和低速状态下满足发动机的进气需要。根据隐身原则,进气道自进气口开始向内、向上弯曲,从正前方根本不可能看到压气机叶片,可获得较好隐身效果。此外,YF-23A採用了固定式进气道设计,以避免可调式进气道的调节斜板之间的缝隙和台阶产生的雷达反射。压缩斜板为二波系设计,并按照YF-23A的预计巡航速度作了最佳化。
YF-23A的发动机喷口设计带有明显的B-2风格。沟槽状喷口位于V形尾翼之间扁平的“海狸尾巴”上,以耐热材料作为衬垫。喷口顶端铰接一块无边形调节板,用于调节喷口大小。在海狸尾巴、V形尾翼、沟槽侧壁的禁止下,来自燃烧室的热喷流在沟槽段与冷空气混合降温(二元矩形喷口使得喷流更容易与周围空气混合),然后再排出机外,红外特徵较之常规战斗机明显降低。除了隐身作用外,笔者推测,YF-23A的喷口设计可能还具有引射增升的作用,V形尾翼则起到了类似端板、增强增升效应的作用。不过这一推测没有获得资料证实。
发动机是飞机的核心部件,YF-23A的优越性能很大程度是建立在YF-119/120的巨大推力基础上的。超巡能力和跨战区航程对发动机提出了极为严苛的要求。为满足性能要求,需要採用具有中等增压比的高压压气机、较大增压比的低压压气机、较高的涡轮前温度和较大的非加力状态推力。为满足不加力推力的要求,通用电气选择了变循环技术。其YF-120发动机上使用了一种特殊的可变面积外涵道引射器,通过控制内、外涵道空气流量来改变涵道比。在超音速巡航状态下,YF-120以接近涡喷发动机的方式工作(涵道比接近0),只有少量外涵道引气用于冷却;亚音速飞行时,YF-120以涡扇发动机的方式上作(最大涵道比约0.3)。YF-120为双转子方案,採用同轴反转技术,两级低压压气机,高/低压涡轮均只有一级。採用三余度数字式发动机控制组件。和F-100比,其零件数量少了40%。而YF-120的军用推力高达125千牛,甚至超过早期F-100的加力推力。
普·惠则选择了相对保守的涡扇发动机方案,当然在设计卜有明显进步,使得YF-119即使不採用变循环技术也可以满足JAFE的要求。YF-119也是双转子方案,3级低压压气机,6级高压压气机,高/低压涡轮各一级。其不加力推力明显比YF-120要低,只有97.9千牛。有意思的足,第一种实用的变循环发动机J-58(用于SR-71)正是普·惠在50年代研製了。对于为何放弃自己首创技术,普·惠方面并没有任何解释。后来通用电气承认,YF120的技术有些超前了,风险确实比YF119要高。

武器配备

美国YF-23战斗机
武器系统由于ATF暂时放弃了对地攻击能力的要求,因此在YF-23A的备选武器上并没有对地攻击武器。当初为ATF準备的主要对空武器是先进中距空空飞弹(AMRAAM,后来的AIM-120)和先进近距空空飞弹(ASRAAM,后来的AIM-132)。由于AIM-132进度严重拖延,迫使美国空军以先进响尾蛇改型(即AIM-9X)作为应急措施。今天,AIM-9X和AIM-120已经成为F/A-22的主要武器。YF-23A继承了诺斯罗普最初方案的内部武器舱设计。格斗飞弹舱和主武器舱串列布置于前机身内。格斗飞弹舱较小,只能容纳2枚AIM-9飞弹。主武器舱较大,可容纳4枚AIM-120飞弹。载弹量和YF-22A相同。由于AIM-120改进后弹翼缩小,因此在F/A-22的主武器舱内可容纳6枚。但YF-23A布置AIM-120A的方式就是上下前后错置排列,和YF-22A对称排列不同,显示其主武器舱尺寸可能较小,因此不一定能放得下6枚AIM-120改型。有资料提及,YF-23A的主武器舱挂架是可以升降的。需要发射AIM-120时,挂架伸出机外,将飞弹置于自由流中再点火发射。此方式和YF-22A的弹射发射方式不同,完全避免了飞弹在穿越机身表面气流时状态发生异常改变的可能性。当然,重量和机内容积的代价是免不了的。 没有资料提及在YF-23A上AIM-9的锁定/发射模式。但这其实是一个很有意思的问题。因为在封闭的飞弹舱内,AIM-9的导引头是不可能捕获目标的。就这个问题,笔者和许多同好曾经进行了讨论,反覆观看F-22武器系统试验的录像,最终形成较一致的看法:F-22在格斗状态下,格斗飞弹舱处于开舱状态,将AIM-9X伸出,以解决导引头锁定问题。YF-23A完全可能采刖类似模式。结合AIM-120的发射模式,笔者推测:挂载AIM-9的可能也是升降式挂架,格斗状态下开舱门将AIM-9伸出机外。由于完全伸出机外,没有机身侧面禁止,AIM-9可以获得比在YF-22A上更好的视界,而且也不需要YF-22A上面的隔热/排焰装置。开舱状态可能会给人比较怪异的感觉,但事实上开舱门伸出飞弹所带来的阻力并不会比传统外挂架的阻力更大,因此不会对飞机性能有太大的负面影响。这种模式唯一的问题在于格斗状态下飞机的雷达反射截面积会明显增大。不过·来在进入视距内空战的情况下雷达隐身意义不大;二来现代空战格斗时间明显缩短,开舱射击暴露时间有限,因此不至于对YF-23A构成严重威胁。对于ATF,特别是YF-23A这利飞机来说,不进入格斗才是最佳战术。除了空空飞弹外,M61火神航炮仍然将作为ATF的固定武器。YF-23A上并没有安装M61,但按照设计方案,航炮将安装在机身右侧,主武器舱上方。可维护性设计·维护口盖·舱门ATF是第一种在设计之初就提出可维护性指标的作战飞机,也是第一种在设计阶段就邀请机务部门参与的战斗机。美国空军如此重视可维护性,很大程度上是受F-15A的影响——F-15A刚刚服役时,故障层出不穷,飞机频频趴窝,人称“机库皇后”。对于传统飞机来说,维护口盖在机身表面的覆盖率是衡量其可维护性的一个重要参考指标。覆盖率高,意味着机载设备可按近性好,机务人员不必将时间消耗在无用但必需的工作上——最典型的就是为了接近设备A,必须先拆下设备B、C、D…;处理完后再按相反顺序装回去,而B、C、D其实对于A的维护毫无意义。但是,对于隐身飞机来说,情况完全不同。表面波的存在,使得机身表面任何开口都可能严重破坏飞机隐身特性。

简单评价

美国YF-23战斗机
总的来看,YF-23A是这样一种飞机相对第三代战斗机上了一个台阶的常规机动性是它设计的基础,然而这也是诺斯罗普在这方面所作的极限。在80年代中后期出现的敏捷性、过失速机动性等新概念,在YF-23A的设计中基本没有考虑。它的设计重点放在隐身和超巡方面。由于之前赢得TATB计画契约,使得诺斯罗普在隐身飞机设计上显得踌躇满志。强调YF-23A的隐身能力,有利于发挥诺斯罗普的技术特长,从效费比的观点来看,把B-2的隐身技术运用到YF-23A上也是合理的。强调超巡能力,则应该是属于诺斯罗普对未来空战要求的判断。这样的设计思想,使得YF-23A在性能上呈现出一种“平均水平上有重点突出”的特点,特别是和YF-22A相比更是如此。在笔者看来,YF-23A的设计思想更接近于当年百系列战斗机中“截击/轰炸机”的慨念,而有悖于诺斯罗普传统的均衡设计思想。这种突然转变是颇为令人瞩目和惊讶的。 均衡设计的战斗机长期竞争失利(虽然失利根本原因并不在此)和ATB计画的成功,可能是促使诺斯罗普改变其传统设计思想的重要因素。加上诺斯罗普对机动性、速度、隐身重要性的认识,最终形成了我们所看到的YF-23A。

标 签

搜索
随机推荐

Powered By 种豆资源网||