《量子计算与量子信息(10周年版)》是2015年清华大学出版社出版的书籍,由Michael A. Nielsen(麦可 A. 尼尔森)、Isaac L. Chuang(艾萨克 L. 庄)编写。
基本介绍
- 书名:量子计算与量子信息(10周年版)
- 作者:[美]Michael A. Nielsen(麦可 A. 尼尔森)、Isaac L. Chuang(艾萨克 L. 庄)
- ISBN:9787302394853
- 定价:99
- 出版社:清华大学出版社
- 出版时间:2015.10.01
内容简介
本书分三大部分。
第1部分为总论和量子物理学基础,还包括少量计算机科学基础知识。量子物理学基础部分主要介绍学习量子计算与量子信息所必需的量子力学基础知识,这一部分採用了侧重于数学框架和公理化体系的讲述方法,从而更便于为非物理专业的读者所理解。
第2部分讲述量子计算,包括量子算法和实现量子算法的一些物理系统的基础内容。这部分首先介绍了实现普适量子计算所需要的基本逻辑门——单量子比特门与条件非门(第4章)。之后较详细地介绍了现有的两个主要量子算法问题,即质因数分解问题(第5章)和搜寻问题(第6章)。第7章讲物理实现,介绍了几个主要的实现条件非门的物理系统;这些物理系统虽然目前尚未实现大规模量子计算,但是大多数已经实现或基本实现了普适量子计算所需要的基本逻辑门。
第3部分为量子资讯理论,主要介绍量子纠错码和量子资讯理论的数学框架。这里包括了非常重要的量子密码的基础内容,即理想条件下的安全性证明(第12.6节)。第3部分未包含物理实现内容。
前言
量子信息处理可以带来许多意想不到的具有特殊优势的结果。量子算法可以有效地进行大数质因数分解。在量子算法背景下,很多经典保密通信协定的安全性受到威胁,然而量子保密通信可以抵抗来自包括量子计算机在内的任何针对通道的攻击。由于存在诸多特殊套用,量子计算与量子信息科学近年来得到蓬勃发展。
对于这一相对年轻但又具有广阔发展前景的学科,优秀的系统化的教材比较缺乏。本书是本领域公认的最权威的系统化教材之一,也几乎是本学科研究人员的必备基本材料,有学者曾将之称为量子计算与量子信息学科教材中的“圣经”。
本书的特点是全面包含量子计算和量子信息的核心内容,且系统性强,结构清晰,深入浅出。这使其很适合作为相关专业的本科生和研究生教材,也适合于用作本领域研究人员的基础参考资料;对于那些準备从其他研究领域转行投入本领域研究的具有物理学、信息科学或数学等专业背景的研究人员,本书也是一本非常合适的入门书籍。
如同任何其他书籍一样,本书的内容也不可能面面俱到。本书几乎未涉及连续变数量子信息处理的有关内容。这方面,目前有多篇综述论文和一些专门教材可供参考。另外,儘管同多数同类教材比较起来,本书已经较深入地介绍了量子密码内容,但是相比于其重要性,量子密码方面的内容量还是有些偏少,对这方面感兴趣的读者可参阅相关专着。
王向斌
清华大学物理系
2015年9月
图书目录
PartI
Fundamentalconcepts1
1Introductionandoverview1
1.1Globalperspectives1
1.1.1Historyofquantumcomputationandquantuminformation2
1.1.2Futuredirections12
1.2Quantumbits13
1.2.1Multiplequbits16
1.3Quantumcomputation17
1.3.1Singlequbitgates17
1.3.2Multiplequbitgates20
1.3.3Measurementsinbasesotherthanthecomputationalbasis22
1.3.4Quantumcircuits22
1.3.5Qubitcopyingcircuit?24
1.3.6Example:Bellstates25
1.3.7Example:quantumteleportation26
1.4Quantumalgorithms28
1.4.1Classicalcomputationsonaquantumcomputer29
1.4.2Quantumparallelism30
1.4.3Deutsch’salgorithm32
1.4.4TheDeutsch–Jozsaalgorithm34
1.4.5Quantumalgorithmssummarized36
1.5Experimentalquantuminformationprocessing42
1.5.1TheStern–Gerlachexperiment43
1.5.2Prospectsforpracticalquantuminformationprocessing46
1.6Quantuminformation50
1.6.1Quantuminformationtheory:exampleproblems52
1.6.2Quantuminformationinawidercontext58
2Introductiontoquantummechanics60
2.1Linearalgebra61
2.1.1Basesandlinearindependence62
2.1.2Linearoperatorsandmatrices63
2.1.3ThePaulimatrices65
2.1.4Innerproducts65
2.1.5Eigenvectorsandeigenvalues68
2.1.6AdjointsandHermitianoperators69
2.1.7Tensorproducts71
2.1.8Operatorfunctions75
2.1.9Thecommutatorandanti-commutator76
2.1.10Thepolarandsingularvaluedecompositions78
2.2Thepostulatesofquantummechanics80
2.2.1Statespace80
2.2.2Evolution81
2.2.3Quantummeasurement84
2.2.4Distinguishingquantumstates86
2.2.5Projectivemeasurements87
2.2.6POVMmeasurements90
2.2.7Phase93
2.2.8Compositesystems93
2.2.9Quantummechanics:aglobalview96
2.3Application:superdensecoding97
2.4Thedensityoperator98
2.4.1Ensemblesofquantumstates99
2.4.2Generalpropertiesofthedensityoperator101
2.4.3Thereduceddensityoperator105
2.5TheSchmidtdecompositionandpurifications109
2.6EPRandtheBellinequality111
3Introductiontocomputerscience120
3.1Modelsforcomputation122
3.1.1Turingmachines122
3.1.2Circuits129
3.2Theanalysisofcomputationalproblems135
3.2.1Howtoquantifycomputationalresources136
3.2.2Computationalcomplexity138
3.2.3DecisionproblemsandthecomplexityclassesPandNP141
3.2.4Aplethoraofcomplexityclasses150
3.2.5Energyandcomputation153
3.3Perspectivesoncomputerscience161
PartIIQuantumcomputation171
4Quantumcircuits171
4.1Quantumalgorithms172
4.2Singlequbitoperations174
4.3Controlledoperations177
4.4Measurement185
4.5Universalquantumgates188
4.5.1Two-levelunitarygatesareuniversal189
4.5.2SinglequbitandCNOTgatesareuniversal191
4.5.3Adiscretesetofuniversaloperations194
4.5.4Approximatingarbitraryunitarygatesisgenericallyhard198
4.5.5Quantumcomputationalcomplexity200
4.6Summaryofthequantumcircuitmodelofcomputation202
4.7Simulationofquantumsystems204
4.7.1Simulationinaction204
4.7.2Thequantumsimulationalgorithm206
4.7.3Anillustrativeexample209
4.7.4Perspectivesonquantumsimulation211
5ThequantumFouriertransformanditsapplications216
5.1ThequantumFouriertransform217
5.2Phaseestimation221
5.2.1Performanceandrequirements223
5.3Applications:order-findingandfactoring226
5.3.1Application:order-finding226
5.3.2Application:factoring232
5.4GeneralapplicationsofthequantumFouriertransform234
5.4.1Period-finding236
5.4.2Discretelogarithms238
5.4.3Thehiddensubgroupproblem240
5.4.4Otherquantumalgorithms?242
6Quantumsearchalgorithms248
6.1Thequantumsearchalgorithm248
6.1.1Theoracle248
6.1.2Theprocedure250
6.1.3Geometricvisualization252
6.1.4Performance253
6.2Quantumsearchasaquantumsimulation255
6.3Quantumcounting261
6.4SpeedingupthesolutionofNP-completeproblems263
6.5Quantumsearchofanunstructureddatabase265
6.6Optimalityofthesearchalgorithm269
6.7Blackboxalgorithmlimits271
7Quantumcomputers:physicalrealization277
7.1Guidingprinciples277
7.2Conditionsforquantumcomputation279
7.2.1Representationofquantuminformation279
7.2.2Performanceofunitarytransformations281
7.2.3Preparationoffiducialinitialstates281
7.2.4Measurementofoutputresult282
7.3Harmonicoscillatorquantumcomputer283
7.3.1Physicalapparatus283
7.3.2TheHamiltonian284
7.3.3Quantumcomputation286
7.3.4Drawbacks286
7.4Opticalphotonquantumcomputer287
7.4.1Physicalapparatus287
7.4.2Quantumcomputation290
7.4.3Drawbacks296
7.5Opticalcavityquantumelectrodynamics297
7.5.1Physicalapparatus298
7.5.2TheHamiltonian300
7.5.3Single-photonsingle-atomabsorptionandrefraction303
7.5.4Quantumcomputation306
7.6Iontraps309
7.6.1Physicalapparatus309
7.6.2TheHamiltonian317
7.6.3Quantumcomputation319
7.6.4Experiment321
7.7Nuclearmagneticresonance324
7.7.1Physicalapparatus325
7.7.2TheHamiltonian326
7.7.3Quantumcomputation331
7.7.4Experiment336
7.8Otherimplementationschemes343
PartIIIQuantuminformation353
8Quantumnoiseandquantumoperations353
8.1ClassicalnoiseandMarkovprocesses354
8.2Quantumoperations356
8.2.1Overview356
8.2.2Environmentsandquantumoperations357
8.2.3Operator-sumrepresentation360
8.2.4Axiomaticapproachtoquantumoperations366
8.3Examplesofquantumnoiseandquantumoperations373
8.3.1Traceandpartialtrace374
8.3.2Geometricpictureofsinglequbitquantumoperations374
8.3.3Bitflipandphaseflipchannels376
8.3.4Depolarizingchannel378
8.3.5Amplitudedamping380
8.3.6Phasedamping383
8.4Applicationsofquantumoperations386
8.4.1Masterequations386
8.4.2Quantumprocesstomography389
8.5Limitationsofthequantumoperationsformalism394
9Distancemeasuresforquantuminformation399
9.1Distancemeasuresforclassicalinformation399
9.2Howclosearetwoquantumstates?403
9.2.1Tracedistance403
9.2.2Fidelity409
9.2.3Relationshipsbetweendistancemeasures415
9.3Howwelldoesaquantumchannelpreserveinformation?416
10Quantumerror-correction425
10.1Introduction426
10.1.1Thethreequbitbitflipcode427
10.1.2Threequbitphaseflipcode430
10.2TheShorcode432
10.3Theoryofquantumerror-correction435
10.3.1Discretizationoftheerrors438
10.3.2Independenterrormodels441
10.3.3Degeneratecodes444
10.3.4ThequantumHammingbound444
10.4Constructingquantumcodes445
10.4.1Classicallinearcodes445
10.4.2Calderbank–Shor–Steanecodes450
10.5Stabilizercodes453
10.5.1Thestabilizerformalism454
10.5.2Unitarygatesandthestabilizerformalism459
10.5.3Measurementinthestabilizerformalism463
10.5.4TheGottesman–Knilltheorem464
10.5.5Stabilizercodeconstructions464
10.5.6Examples467
10.5.7Standardformforastabilizercode470
10.5.8Quantumcircuitsforencoding,decoding,andcorrection472
10.6Fault-tolerantquantumcomputation474
10.6.1Fault-tolerance:thebigpicture475
10.6.2Fault-tolerantquantumlogic482
10.6.3Fault-tolerantmeasurement489
10.6.4Elementsofresilientquantumcomputation493
11Entropyandinformation500
11.1Shannonentropy500
11.2Basicpropertiesofentropy502
11.2.1Thebinaryentropy502
11.2.2Therelativeentropy504
11.2.3Conditionalentropyandmutualinformation505
11.2.4Thedataprocessinginequality509
11.3VonNeumannentropy510
11.3.1Quantumrelativeentropy511
11.3.2Basicpropertiesofentropy513
11.3.3Measurementsandentropy514
11.3.4Subadditivity515
11.3.5Concavityoftheentropy516
11.3.6Theentropyofamixtureofquantumstates518
11.4Strongsubadditivity519
11.4.1Proofofstrongsubadditivity519
11.4.2Strongsubadditivity:elementaryapplications522
12Quantuminformationtheory528
12.1Distinguishingquantumstatesandtheaccessibleinformation529
12.1.1TheHolevobound531
12.1.2ExampleapplicationsoftheHolevobound534
12.2Datacompression536
12.2.1Shannon’snoiselesschannelcodingtheorem537
12.2.2Schumacher’squantumnoiselesschannelcodingtheorem542
12.3Classicalinformationovernoisyquantumchannels546
12.3.1Communicationovernoisyclassicalchannels548
12.3.2Communicationovernoisyquantumchannels554
12.4Quantuminformationovernoisyquantumchannels561
12.4.1EntropyexchangeandthequantumFanoinequality561
12.4.2Thequantumdataprocessinginequality564
12.4.3QuantumSingletonbound568
12.4.4Quantumerror-correction,refrigerationandMaxwell’sdemon569
12.5Entanglementasaphysicalresource571
12.5.1Transformingbi-partitepurestateentanglement573
12.5.2Entanglementdistillationanddilution578
12.5.3Entanglementdistillationandquantumerror-correction580
12.6Quantumcryptography582
12.6.1Privatekeycryptography582
12.6.2Privacyamplificationandinformationreconciliation584
12.6.3Quantumkeydistribution586
12.6.4Privacyandcoherentinformation592
12.6.5Thesecurityofquantumkeydistribution593
Appendices608
Appendix1:Notesonbasicprobabilitytheory608
Appendix2:Grouptheory610
A2.1Basicdefinitions610
A2.1.1Generators611
A2.1.2Cyclicgroups611
A2.1.3Cosets612
A2.2Representations612
A2.2.1Equivalenceandreducibility612
A2.2.2Orthogonality613
A2.2.3Theregularrepresentation614
A2.3Fouriertransforms615
Appendix3:TheSolovay--Kitaevtheorem617
Appendix4:Numbertheory625
A4.1Fundamentals625
A4.2ModulararithmeticandEuclid’salgorithm626
A4.3Reductionoffactoringtoorder-finding633
A4.4Continuedfractions635
Appendix5:PublickeycryptographyandtheRSAcryptosystem640
Appendix6:ProofofLieb’stheorem645
Bibliography649
Index
665